Gaussian Processes for Machine Learning
نویسندگان
چکیده
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received growing attention in the machine learning community over the past decade. The book provides a long-needed, systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises. Code and datasets can be obtained on the web. Appendices provide mathematical background and a discussion of Gaussian Markov processes.
منابع مشابه
A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملAssessment of the Efficiency of Climatic factors and geomorphometry in predicting vegetation percentages based on machine learning processes
Introduction: Rangelands are natural ecosystems having large genetic resources. Since plant vegetation is the bed of life on earth and changes under the influence of surrounding environmental elements, using environmental element can highly contribute to estimate vegetation percent more accurately. Two effective elements which can contribute to estimate the vegetation distribution are climatic ...
متن کاملTensor Regression Meets Gaussian Processes
Low-rank tensor regression, a new model class that learns high-order correlation from data, has recently received considerable attention. At the same time, Gaussian processes (GP) are well-studied machine learning models for structure learning. In this paper, we demonstrate interesting connections between the two, especially for multi-way data analysis. We show that low-rank tensor regression i...
متن کاملMachine learning based hyperspectral image analysis: A survey
Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense...
متن کاملMultiple Kernel Learning and Automatic Subspace Relevance Determination for High-dimensional Neuroimaging Data
Alzheimer’s disease is a major cause of dementia. Its diagnosis requires accurate biomarkers that are sensitive to disease stages. In this respect, we regard probabilistic classification as a method of designing a probabilistic biomarker for disease staging. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. In this pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009